5,360 research outputs found

    The Chern-Simons Action in Non-Commutative Geometry

    Get PDF
    A general definition of Chern-Simons actions in non-commutative geometry is proposed and illustrated in several examples. These are based on ``space-times'' which are products of even-dimensional, Riemannian spin manifolds by a discrete (two-point) set. If the *algebras of operators describing the non-commutative spaces are generated by functions over such ``space-times'' with values in certain Clifford algebras the Chern-Simons actions turn out to be the actions of topological gravity on the even-dimensional spin manifolds. By contrasting the space of field configurations in these examples in an appropriate manner one is able to extract dynamical actions from Chern-Simons actions.Comment: 40 page

    Polaron action for multimode dispersive phonon systems

    Full text link
    Path-integral approach to the tight-binding polaron is extended to multiple optical phonon modes of arbitrary dispersion and polarization. The non-linear lattice effects are neglected. Only one electron band is considered. The electron-phonon interaction is of the density-displacement type, but can be of arbitrary spatial range and shape. Feynman's analytical integration of ion trajectories is performed by transforming the electron-ion forces to the basis in which the phonon dynamical matrix is diagonal. The resulting polaron action is derived for the periodic and shifted boundary conditions in imaginary time. The former can be used for calculating polaron thermodynamics while the latter for the polaron mass and spectrum. The developed formalism is the analytical basis for numerical analysis of such models by path-integral Monte Carlo methods.Comment: 9 page

    Magnetism and the Weiss Exchange Field - A Theoretical Analysis Inspired by Recent Experiments

    Full text link
    The huge spin precession frequency observed in recent experiments with spin-polarized beams of hot electrons shot through magnetized films is interpreted as being caused by Zeeman coupling of the electron spins to the so-called Weiss exchange field in the film. A "Stern-Gerlach experiment" for electrons moving through an inhomogeneous exchange field is proposed. The microscopic origin of exchange interactions and of large mean exchange fields, leading to different types of magnetic order, is elucidated. A microscopic derivation of the equations of motion of the Weiss exchange field is presented. Novel proofs of the existence of phase transitions in quantum XY-models and antiferromagnets, based on an analysis of the statistical distribution of the exchange field, are outlined.Comment: 36 pages, 3 figure

    Absence of Embedded Mass Shells: Cerenkov Radiation and Quantum Friction

    Full text link
    We show that, in a model where a non-relativistic particle is coupled to a quantized relativistic scalar Bose field, the embedded mass shell of the particle dissolves in the continuum when the interaction is turned on, provided the coupling constant is sufficiently small. More precisely, under the assumption that the fiber eigenvectors corresponding to the putative mass shell are differentiable as functions of the total momentum of the system, we show that a mass shell could exist only at a strictly positive distance from the unperturbed embedded mass shell near the boundary of the energy-momentum spectrum.Comment: Revised version: a remark added at the end of Section

    Polaron Crystallization and Melting: Effects of the Long-Range Coulomb Forces

    Full text link
    On examining the stability of a Wigner crystal in an ionic dielectric, two competitive effects due to the polaron formation are found to be important: (i) the screening of the Coulomb force, which destabilizes the crystal, compensated by (ii) the increase of the carrier mass (polaron mass). The competition between the two effects is carefully studied, and the quantum melting of the polaronic Wigner crystal is examined by varying the density at zero temperature. By calculating the quantum fluctuations of both the electron and the polarization, we show that there is a competition between the dissociation of the polarons at the insulator-to-metal transition (IMT), and a melting towards a polaron liquid. We find that at strong coupling, a liquid state of dielectric polarons cannot exist, and the IMT is driven by the polaron dissociation. Next, taking into account the dipolar interactions between localized carriers, we show that these are responsible for an instability of the transverse vibrational modes of the polaronic Wigner crystal as the density increases. This provides a new mechanism for the IMT in doped dielectrics, which yields interesting dielectric properties below and beyond the transition. An optical signature of such a mechanism for the IMT is provided.Comment: 10 pages, 3 figures, to be published in Int.J.Mod.Phys.
    • …
    corecore